Scientific Literature & Clinical Studies
Al‐Hashedi, A.A.; Laurenti, M.; Benhamou, V.; Tamimi, F. Decontamination of titanium implants using physical methods. Clin Oral Implan Res 2017, 28, 1013-1021.
Carral, C.; Munoz, F.; Permuy, M.; Linares, A.; Dard, M.; Blanco, J. Mechanical and chemical implant decontamination in surgical peri-implantitis treatment: preclinical "in vivo" study. J Clin Periodontol 2016, 43, 694-701, https://doi.org/10.1111/jcpe.12566
De Lauretis, A.; Agger, A.E.; Pal, A.; Pedersen, J.S.; Szostak, S.M.; Lund, R.; Lyngstadaas, S.P.; Ellingsen, J.E.; Linke, D.; Haugen, H.J. Balancing sterilization and functional properties in Poloxamer 407 hydrogels: comparing heat and radiation techniques. Regenerative Biomaterials 2025, 12, doi:10.1093/rb/rbaf005.
De Tapia, B.; Valles, C.; Ribeiro-Amaral, T.; Mor, C.; Herrera, D.; Sanz, M.; Nart, J. The adjunctive effect of a titanium brush in implant surface decontamination at peri‐implantitis surgical regenerative interventions: A randomized controlled clinical trial. J Clin Periodontol 2019, 46, 586-596.
Eickholz, P.; Jepsen, K.; Jepsen, S.; Karaca, E.O.; Kuru, B.E.; Nemcovsky, C.E.; Papapanou, P.N.; Pilloni, A.; Renvert, S.; Roccuzzo, M.; Sanz-Esporrin, J.; Spahr, A.; Stavropoulos, A.; Verket, A.; Vrazic, D.; Lyngstadaas, S.P. Peri-Implant Health and the Knowing-Doing Gap-A Digital Survey on Procedures and Therapies. Frontiers in Dental Medicine 2021, 2, doi:10.3389/fdmed.2021.726607.
Fostad, G.; Hafell, B.; Forde, A.; Dittmann, R.; Sabetrasekh, R.; Will, J.; Ellingsen, J.E.; Lyngstadaas, S.P.; Haugen, H.J. Loadable TiO scaffolds-A correlation study between processing parameters, micro CT analysis and mechanical strength. J Eur Ceram Soc 2009, 29, 2773-2781, doi:10.1016/j.jeurceramsoc.2009.03.017.
Gustumhaugen, E.; Lonn-Stensrud, J.; Scheie, A.A.; Lyngstadaas, S.P.; Ekfeldt, A.; Taxt-Lamolle, S. Effect of chemical and mechanical debridement techniques on bacterial re-growth on rough titanium surfaces: an in vitro study. Clin Oral Implants Res 2014, 25, 707-713, https://doi.org/10.1111/clr.12130.
Gómez-Florit, M.; Rubert, M.; Ramis, J.M.; Haugen, H.J.; Tiainen, H.; Lyngstadaas, S.P.; Monjo, M. TiO<SUB>2</SUB> Scaffolds Sustain Differentiation of MC3T3-E1 Cells. J Biomater Tiss Eng 2012, 2, 336-344, doi:10.1166/jbt.2012.1055.
Haugen, H.; Will, J.; Köhler, A.; Hopfner, U.; Aigner, J.; Wintermantel, E. Ceramic TiO foams: characterisation of a potential scaffold. J Eur Ceram Soc 2004, 24, 661-668, doi:10.1016/S0955-2219(03)00255-3.
Hussain, B.; Khan, S.; Agger, A.E.; Ellingsen, J.E.; Lyngstadaas, S.P.; Bueno, J.; Haugen, H.J. A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. J Funct Biomater 2023, 14, doi:10.3390/jfb14080394.
Hussain, B.; Simm, R.; Bueno, J.; Giannettou, S.; Naemi, A.O.; Lyngstadaas, S.P.; Haugen, H.J. Biofouling on titanium implants: a novel formulation of poloxamer and peroxide for in situ removal of pellicle and multi-species oral biofilm. Regen Biomater 2024, 11, rbae014, doi:10.1093/rb/rbae014.
John, G.; Becker, J.; Schwarz, F. Rotating titanium brush for plaque removal from rough titanium surfaces--an in vitro study. Clin Oral Implants Res 2014, 25, 838-842, https://doi.org/10.1111/clr.12147.
Jordi, G.-A. Alterations to Dental Implant Surfaces Produced by Different Methods of Mechanical Debridement. In Vitro Scanning Electron Microscope Study. EC Dental Science 2017, 15, 36-43.
Le Thieu, M.K.; Homayouni, A.; Haeren, L.R.; Tiainen, H.; Verket, A.; Ellingsen, J.E.; Ronold, H.J.; Wohlfahrt, J.C.; Cantalapiedra, A.G.; Munoz, F.M.G.; Mendana, M.P.; Lyngstadaas, S.P.; Haugen, H.J. Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomater Res 2021, 25, 43, doi:10.1186/s40824-021-00245-3.
Lollobrigida, M.; Fortunato, L.; Serafini, G.; Mazzucchi, G.; Bozzuto, G.; Molinari, A.; Serra, E.; Menchini, F.; Vozza, I.; De Biase, A. The Prevention of Implant Surface Alterations in the Treatment of Peri-Implantitis: Comparison of Three Different Mechanical and Physical Treatments. Int J Environ Res Public Health 2020, 17, 2624, https://doi.org/10.3390/ijerph17082624.
Müller, B.; Haugen, H.; Nilsen, O.; Tiainen, H. Atomic layer deposited TiO2 protects porous ceramic foams from grain boundary corrosion. Corrosion Science 2016, 106, 35-42, doi:10.1016/j.corsci.2016.01.023.
Muller, B.; Reseland, J.E.; Haugen, H.J.; Tiainen, H. Cell growth on pore-graded biomimetic TiO2 bone scaffolds. J Biomater Appl 2015, 29, 1284-1295, doi:10.1177/0885328214559859.
Ovrebo, O.; De Lauretis, A.; Ma, Q.; Lyngstadaas, S.P.; Perale, G.; Nilsen, O.; Rossi, F.; Haugen, H.J. Towards bone regeneration: Understanding the nucleating ability of proline-rich peptides in biomineralisation. Biomater Adv 2024, 159, 213801, doi:10.1016/j.bioadv.2024.213801.
Pullisaar, H.; Verket, A.; Szoke, K.; Tiainen, H.; Haugen, H.J.; Brinchmann, J.E.; Reseland, J.E.; Ostrup, E. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. J Tissue Eng 2015, 6, 2041731415575870, doi:10.1177/2041731415575870.
Ramis, J.M.; Rubert, M.; Vondrasek, J.; Gaya, A.; Lyngstadaas, S.P.; Monjo, M. Effect of enamel matrix derivative and of proline-rich synthetic peptides on the differentiation of human mesenchymal stem cells toward the osteogenic lineage. Tissue Eng Part A 2012, 18, 1253-1263, doi:10.1089/ten.tea.2011.0404.
Rubert, M.; Monjo, M.; Lyngstadaas, S.P.; Ramis, J.M. Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation. Biomed Mater 2012, 7, 055003, doi:10.1088/1748-6041/7/5/055003.
Rubert, M.; Pullisaar, H.; Gomez-Florit, M.; Ramis, J.M.; Tiainen, H.; Haugen, H.J.; Lyngstadaas, S.P.; Monjo, M. Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. J Biomed Mater Res A 2013, 101, 1768-1777, doi:10.1002/jbm.a.34458.
Rubert, M.; Ramis, J.M.; Vondrasek, J.; Gayà, A.; Lyngstadaas, S.P.; Monjo, M. Synthetic Peptides Analogue to Enamel Proteins Promote Osteogenic Differentiation of MC3T3-E1 and Mesenchymal Stem Cells. J Biomater Tiss Eng 2011, 1, 198-209, doi:10.1166/jbt.2011.1018.
Rumian, L.; Tiainen, H.; Cibor, U.; Krok-Borkowicz, M.; Brzychczy-Wloch, M.; Haugen, H.J.; Pamula, E. Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Mater Sci Eng C Mater Biol Appl 2016, 69, 856-864, doi:10.1016/j.msec.2016.07.065.
Schroder, M.; Reseland, J.E.; Haugen, H.J. Osteoblasts in a Perfusion Flow Bioreactor-Tissue Engineered Constructs of TiO(2) Scaffolds and Cells for Improved Clinical Performance. Cells 2022, 11, doi:10.3390/cells11131995.
Thieu, M.K.L.; Haugen, H.J.; Sanz-Esporrin, J.; Sanz, M.; Lyngstadaas, S.P.; Verket, A. Guided bone regeneration of chronic non-contained bone defects using a volume stable porous block TiO2 scaffold: An experimental in vivo study. Clin Oral Implants Res 2021, 32, 369-381, doi:10.1111/clr.13708.
Thieu, M.K.L.; Stoetzel, S.; Rahmati, M.; El Khassawna, T.; Verket, A.; Sanz-Esporrin, J.; Sanz, M.; Ellingsen, J.E.; Haugen, H.J. Immunohistochemical comparison of lateral bone augmentation using a synthetic TiO(2) block or a xenogeneic graft in chronic alveolar defects. Clin Implant Dent Relat Res 2023, 25, 57-67, doi:10.1111/cid.13143.
Tiainen, H.; Wiedmer, D.; Haugen, H.J. Processing of highly porous TiO bone scaffolds with improved compressive strength. J Eur Ceram Soc 2013, 33, 15-24, doi:10.1016/j.jeurceramsoc.2012.08.016.
Tiainen, H.; Wohlfahrt, J.C.; Verket, A.; Lyngstadaas, S.P.; Haugen, H.J. Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomater 2012, 8, 2384-2391, doi:10.1016/j.actbio.2012.02.020.
Toma, S.; Behets, C.; Brecx, M.C.; Lasserre, J.F. In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. Materials (Basel) 2018, 11, https://doi.org/10.3390/ma11122484.
Toma, S.; Brecx, M.C.; Lasserre, J.F. Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J Clin Med 2019, 8, 966, https://doi.org/10.3390/jcm8070966.
Verket, A.; Muller, B.; Wohlfahrt, J.C.; Lyngstadaas, S.P.; Ellingsen, J.E.; Jostein Haugen, H.; Tiainen, H. TiO(2) scaffolds in peri-implant dehiscence defects: an experimental pilot study. Clin Oral Implants Res 2016, 27, 1200-1206, doi:10.1111/clr.12725.
Vigano, P.; Apaza Alccayhuaman, K.A.; Sakuma, S.; Amari, Y.; Bengazi, F.; Botticelli, D. Use of TiBrush for surface decontamination at peri-implantitis sites in dogs: Radiographic and histological outcomes. J Investig Clin Dent 2019, 10, e12378, https://doi.org/10.1111/jicd.12378.
Villa, O.; Brookes, S.J.; Thiede, B.; Heijl, L.; Lyngstadaas, S.P.; Reseland, J.E. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts. J Tissue Eng 2015, 6, 2041731415575857, doi:10.1177/2041731415575857.
Wald, T.; Bednárová, L.; Osicka, R.; Pachl, P.; Sulc, M.; Lyngstadaas, S.P.; Slaby, I.; Vondrásek, J. Biophysical characterization of recombinant human ameloblastin. European journal of oral sciences 2011, 119, 261-269, doi:10.1111/j.1600-0722.2011.00913.x.
Wang, Q.; Haugen, H.J.; Linke, D.; Lyngstadaas, S.P.; Sigurjónsson, O.E.; Ma, Q.L. Impact of different chemical debridement agents on early cellular responses to titanium dental implants: A transcriptome-based in vitro study on peri-implant tissue regeneration. Colloid Surface B 2025, 253, doi:10.1016/j.colsurfb.2025.114727.
Zhang, X.; Tiainen, H.; Haugen, H.J. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput 2019, 57, 311-324, doi:10.1007/s11517-018-1884-2.