Scientific Literature & Clinical Studies
MucoPrep™ & PeriPrep™
[1] Hussain, B.; Haugen, H.J.; Aass, A.M.; Sanz, M.; Antonoglou, G.N.; Bouchard, P.; Bozic, D.; Eickholz, P.; Jepsen, K.; Jepsen, S., et al. (2021). Peri-Implant Health and the Knowing-Doing Gap-A Digital Survey on Procedures and Therapies. Frontiers in Dental
Medicine, 2, doi:ARTN 72660710.3389/fdmed.2021.726607.
[2] Hussain, B.; Khan, S.; Agger, A.E.; Ellingsen, J.E.; Lyngstadaas, S.P.; Bueno, J.; Haugen, H.J. (2023). A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. Journal of Functional Biomaterials, 14,
doi:10.3390/jfb14080394.
[3] Hussain, B.; Simm, R.; Bueno, J.; Giannettou, S.; Naemi, A.O.; Lyngstadaas, S.P.; Haugen, H.J. (2024). Biofouling on titanium implants: a novel formulation of poloxamer and peroxide for in situ removal of pellicle and multi-species oral biofilm. Regenerative Biomaterials, 11, rbae014, doi:10.1093/rb/rbae014.
[4] De Lauretis, A.; Agger Eriksson, A.; Pal, A.; Skov Pedersen, J.; Szostak, S.M.; Lund, R.; Lyngstadaas, S.P.; Ellingsen, J.E.; Linke, D. & Haugen, H.J. (2025). Balancing sterilization and functional properties in Poloxamer 407 hydrogels: comparing heat and radiation techniques. Regenerative Biomaterials, ISSN 2056-3426, doi: 10.1093/rb/rbaf005.
[5] Wang Q, Haugen HJ, Linke D, Lyngstadaas SP, Sigurjónsson ÓE, Ma Q. Impact of different chemical debridement agents on early cellular responses to titanium dental implants: A transcriptome-based in vitro study on peri-implant tissue regeneration. Colloids Surf B Biointerfaces. 2025 Sep;253:114727. doi: 10.1016/j.colsurfb.2025.114727. Epub 2025 Apr 25. PMID: 40288111.
[6] De Lauretis A, Wang Q, Santacroce M, Thiede B, Ma Q, Lyngstadaas SP, Ellingsen JE, Linke D, Haugen HJ. A Comparative Study of the Impact of Chemical Debridement Products on the Proteomic Profile of the Salivary Pellicle and Cell Adhesion on OsseoSpeed Titanium Dental Implant Surfaces. ACS Appl Mater Interfaces. 2025 Oct 1;17(39):54579-54592. doi: 10.1021/acsami.5c14570. Epub 2025 Sep 17. PMID: 40963248; PMCID: PMC12492328.
MucoHeal™ & PeriHeal™
[1] Rubert, M.; Ramis, J.M.; Vondrasek, J.; Gayà, A.; Lyngstadaas, S.P.; Monjo, M. (2011). Synthetic Peptides Analogue to Enamel Proteins Promote Osteogenic Differentiation of MC3T3-E1 and Mesenchymal Stem Cells. J Biomater Tiss Eng, 1, 198-209, doi:10.1166/jbt.2011.1018.
[2] Wald, T.; Bednárová, L.; Osicka, R.; Pachl, P.; Sulc, M.; Lyngstadaas, S.P.; Slaby, I.; Vondrásek, J. (2011). Biophysical characterization of recombinant human ameloblastin. European journal of oral sciences, 119, 261-269, doi:10.1111/j.1600-0722.2011.00913.x.
[3] Ramis, J.M.; Rubert, M.; Vondrasek, J.; Gaya, A.; Lyngstadaas, S.P.; Monjo, M. (2012). Effect of enamel matrix derivative and of proline-rich synthetic peptides on the differentiation of human mesenchymal stem cells toward the osteogenic lineage. Tissue Eng Part A, 18, 1253-1263, doi:10.1089/ten.tea.2011.0404.
[4] Rubert, M.; Monjo, M.; Lyngstadaas, S.P.; Ramis, J.M. (2012) Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation. Biomed Mater, 7, 055003, doi:10.1088/1748-6041/7/5/055003.
[5] Petzold, C.; Monjo, M.; Rubert, M.; Reinholt, F.P.; Gomez-Florit, M.; Ramis, J.M.; Ellingsen, J.E.; Lyngstadaas, S.P. (2013). Effect of proline-rich synthetic peptide-coated titanium implants on bone healing in a rabbit model. Int J Oral Maxillofac Implants, 28, e547-555, doi:10.11607/jomi.te35.
[6] Rubert, M.; Pullisaar, H.; Gomez-Florit, M.; Ramis, J.M.; Tiainen, H.; Haugen, H.J.; Lyngstadaas, S.P.; Monjo, M. (2013) Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. J Biomed Mater Res A, 101, 1768-1777, doi:10.1002/jbm.a.34458.
[7] Villa, O.; Brookes, S.J.; Thiede, B.; Heijl, L.; Lyngstadaas, S.P.; Reseland, J.E. (2015). Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts. J Tissue Eng, 6, 2041731415575857, doi:10.1177/2041731415575857.
[8] Perale, G.; Monjo, M.; Ramis, J.M.; Ovrebo, O.; Betge, F.; Lyngstadaas, P.; Haugen, H.J. (2019). Biomimetic Biomolecules in Next Generation Xeno-Hybrid Bone Graft Material Show Enhanced In Vitro Bone Cells Response. J Clin Med, 8, 2159, doi:10.3390/jcm8122159.
[9] Zhu, H.; Blahnova, V.H.; Perale, G.; Xiao, J.; Betge, F.; Boniolo, F.; Filova, E.; Lyngstadaas, S.P.; Haugen, H.J. (2020). Xeno-Hybrid Bone Graft Releasing Biomimetic Proteins Promotes Osteogenic Differentiation of hMSCs. Front Cell Dev Biol, 8, 619111, doi:10.3389/fcell.2020.619111.
[10] Zhu, H.; Gomez, M.; Xiao, J.; Perale, G.; Betge, F.; Lyngstadaas, S.P.; Haugen, H.J. (2020). Xenohybrid Bone Graft Containing Intrinsically Disordered Proteins Shows Enhanced In Vitro Bone Formation. ACS Appl Bio Mater, 3, 2263-2274, doi:10.1021/acsabm.0c00064.
[11] Rahmati, M.; Stötzel, S.; El Khassawna, T.; Mao, C.Y.; Ali, A.; Vaughan, J.C.; Iskhahova, K.; Wieland, D.C.F.; Cantalapiedra, A.G.; Perale, G., et al. (2022) Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts. Mater Today, 52, 63-79, doi:10.1016/j.mattod.2021.12.001.
[12] Øvrebø, Ø.; De Lauretis, A.; Ma, Q.; Lyngstadaas, S.P.; Perale, G.; Nilsen, O.; Rossi, F.; Haugen, H.J. (2024). Towards bone regeneration: Understanding the nucleating ability of proline-rich peptides in biomineralisation. Biomater Adv, 159, 213801, doi:10.1016/j.bioadv.2024.213801.
[13] Øvrebø, Øystein; Giorgi, Zoe; De Lauretis, Angela; Vanoli, Valeria; Castiglione, Franca; Briatico-Vangosa, Francesco; Ma, Qianli; Perale, Giuseppe; Haugen, Håvard Jostein & Rossi, Filippo (2024). Characterisation and biocompatibility of crosslinked hyaluronic acid with BDDE and PEGDE for clinical applications. Reactive & functional polymers. ISSN 1381-5148. 200. doi: 10.1016/j.reactfunctpolym.2024.105920.
[14] Øvrebø Ø, Lyngstadaas SP, El Khassawna T, Jamous R, Ma Q, Muñoz F, Permuy M, Cantalapiedra AG, Serrano-Muñoz AJ, Ramis JM, Monjo M, Rossi F, Haugen HJ. Multiomics Comparison of Proline-Rich Peptide-Enhanced Hyaluronic Acid Gels Versus Conventional Regenerative Materials: An Early Wound-Healing Model. J Periodontal Res. 2025 Sep 10. doi: 10.1111/jre.70032. Epub ahead of print. PMID: 40928114.
[15] Saiz, A.M., Rahmati, M., Johnson, S.D. et al. Systemic versus local delivery of mesenchymal stem cells to improve the early stages of fracture healing in a polytrauma model. J Biol Eng 19, 82 (2025). https://doi.org/10.1186/s13036-025-00554-4.
PeriBrush™
[1] Gustumhaugen, E.; Lonn-Stensrud, J.; Scheie, A.A.; Lyngstadaas, S.P.; Ekfeldt, A.; Taxt-Lamolle, S. (2014). Effect of chemical and mechanical debridement techniques on bacterial re-growth on rough titanium surfaces: an in vitro study. Clinal Oral Implants Research, 25, 707-713, https://doi.org/10.1111/clr.12130.
[2] John, G.; Becker, J.; Schwarz, F. (2014). Rotating titanium brush for plaque removal from rough titanium surfaces-an in vitro study. Clinal Oral Implants Research, 25, 838- 842, https://doi.org/10.1111/clr.12147.
[3] Carral, C.; Munoz, F.; Permuy, M.; Linares, A.; Dard, M.; Blanco, J. (2016) Mechanical and chemical implant decontamination in surgical peri-implantitis treatment: preclinical "in vivo" study. Journal of Clinical Periodontology, 43, 694-701, https://doi.org/10.1111/jcpe.12566
[4] Al-Hashedi, A.A.; Laurenti, M.; Benhamou, V.; Tamimi, F. (2017). Decontamination of titanium implants using physical methods. Clinal Oral Implants Research, 28, 1013-1021.
[5] Jordi, G.A. (2017). Alterations to Dental Implant Surfaces Produced by Different Methods of Mechanical Debridement. In Vitro Scanning Electron Microscope Study. EC Dental Science, 15, 36-43.
[6] Toma, S.; Behets, C.; Brecx, M.C.; Lasserre, J.F. (2018). In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. Materials (Basel), 11, https://doi.org/10.3390/ma11122484.
[7] de Tapia, B.; Valles, C.; Ribeiro-Amaral, T.; Mor, C.; Herrera, D.; Sanz, M.; Nart, J. (2019). The adjunctive effect of a titanium brush in implant surface decontamination at peri-implantitis surgical regenerative interventions: A randomized controlled clinical trial. Journal of Clinical Periodontology, 46, 586-596.
[8] Toma, S.; Brecx, M.C.; Lasserre, J.F. (2019). Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J Clin Med, 8, 966, https://doi.org/10.3390/jcm8070966.
[9] Vigano, P.; Apaza Alccayhuaman, K.A.; Sakuma, S.; Amari, Y.; Bengazi, F.; Botticelli, D. (2019). Use of TiBrush for surface decontamination at peri-implantitis sites in dogs: Radiographic and histological outcomes. J Investig Clin Dent, 10, e12378, https://doi.org/10.1111/jicd.12378.
[10] Lollobrigida, M.; Fortunato, L.; Serafini, G.; Mazzucchi, G.; Bozzuto, G.; Molinari, A.; Serra, E.; Menchini, F.; Vozza, I.; De Biase, A. (2020). The Prevention of Implant Surface Alterations in the Treatment of Peri-Implantitis: Comparison of Three Different Mechanical and Physical Treatments. Int J Environ Res Public Health, 17, 2624, https://doi.org/10.3390/ijerph17082624.
[11] De Lauretis, Angela; Santacroce, Marco; Ellingsen, Jan Eirik; Lyngstadaas, Ståle Petter; Linke, Dirk & Haugen, Håvard Jostein (2025). Surface-specific outcomes of mechanical debridement with titanium, chitosan and nitinol brushes on titanium dental implant surfaces. Journal of Dentistry. ISSN 0300-5712. doi: 10.1016/j.jdent.2025.106010.
NuBone™
[1] Fostad, G., Hafell, B., Forde, A., Dittmann, R., Sabetrasekh, R., Will, J., Ellingsen, J. E., Lyngstadaas, S. P., and Haugen, H. J. (2009) Loadable TiO2 scaffolds-A correlation study between processing parameters, micro CT analysis and mechanical strength. J Eur Ceram Soc 29, 2773-2781.
[2] Sabetrasekh, R., Tiainen, H., Reseland, J. E., Will, J., Ellingsen, J. E., Lyngstadaas, S. P., and Haugen, H. J. (2010) Impact of trace elements on biocompatibility of titanium scaffolds. Biomed Mater.
[3] Tiainen, H., Lyngstadaas, S. P., Ellingsen, J. E., and Haugen, H. J. (2010) Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci-Mater M 21, 2783 2792
[4] Sabetrasekh, R., Tiainen, H., Lyngstadaas, S. P., Reseland, J., and Haugen, H. (2011) A Novel Ultra-porous Titanium Dioxide Ceramic with Excellent Biocompatibility. J Biomater Appl 25, 559-580
[5] Tiainen, H., Monjo, M., Knychala, J., Nilsen, O., Lyngstadaas, S. P., Ellingsen, J. E., and Haugen, H. J. (2011) The effect of fluoride surface modification of ceramic TiO2 on the surface properties and biological response of osteoblastic cells in vitro. Biomed Mater.
[6] Gomez-Florit, M., Rubert, M., Ramis, J. M., Haugen, H. J., Tiainen, H., Lyngstadaas, S. P., and Monjo, M. (2012) TiO2 Scaffolds Sustain Differentiation of MC3T3-E1 Cells. J Biomater Tiss Eng 2, 336-344.
[7] Tiainen, H., Eder, G., Nilsen, O., and Haugen, H. J. (2012) Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds. Mat Sci Eng C-Mater 32, 1386 1393.
[8] Tiainen, H., Verket, A., Haugen, H. J., Lyngstadaas, S. P., and Wohlfahrt, J. C. (2012) Dimensional Ridge Preservation with a Novel Highly Porous TiO(2) Scaffold: An Experimental Study in Minipigs. Int J Biomater, 851264.
[9] Tiainen, H., Wohlfahrt, J. C., Verket, A., Lyngstadaas, S. P., and Haugen, H. J. (2012) Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomater 8, 2384-2391.
[10] Verket, A., Tiainen, H., Haugen, H. J., Lyngstadaas, S. P., Nilsen, O., and Reseland, J.E. (2012) Enhanced Osteoblast Differentiation on Scaffolds Coated with TiO2 Compared to SiO2 and CaP Coatings. Biointerphases.
[11] Haugen, H. J., Monjo, M., Rubert, M., Verket, A., Lyngstadaas, S. P., Ellingsen, J. E., Ronold, H. J., and Wohlfahrt, J. C. (2013) Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomater 9,
5390-5399.
[12] Pullisaar, H., Tiainen, H., Landin, M. A., Lyngstadaas, S. P., Haugen, H. J., Reseland, J. E., and Ostrup, E. (2013) Enhanced in vitro osteoblast differentiation on TiO2 scaffold coated with alginate hydrogel containing simvastatin. J Tissue Eng 4, 2041731413515670.
[13] Rubert, M., Pullisaar, H., Gomez-Florit, M., Ramis, J. M., Tiainen, H., Haugen, H. J., Lyngstadaas, S. P., and Monjo, M. (2013) Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. J Biomed Mater Res A 101, 1768-1777.
[14] Tiainen, H., Wiedmer, D., and Haugen, H. J. (2013) Processing of highly porous TiO2 bone scaffolds with improved compressive strength. J Eur Ceram Soc 33, 15-24
[15] Pullisaar, H., Reseland, J. E., Haugen, H. J., Brinchmann, J. E., and Ostrup, E. (2014) Simvastatin coating of TiO(2) scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun 447, 139-144.
[16] Muller, B., Reseland, J. E., Haugen, H. J., and Tiainen, H. (2015) Cell growth on pore graded biomimetic TiO2 bone scaffolds. J Biomater Appl 29, 1284-1295.
[17] Pullisaar, H., Verket, A., Szoke, K., Tiainen, H., Haugen, H. J., Brinchmann, J. E., Reseland, J. E., and Ostrup, E. (2015) Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. J Tissue Eng 6, 2041731415575870.
[18] Rumian, L., Reczynska, K., Wrona, M., Tiainen, H., Haugen, H. J., and Pamula, E. (2015) The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects. Acta Bioeng Biomech 17, 3-9.
[19] Verket, A., Muller, B., Wohlfahrt, J. C., Lyngstadaas, S. P., Ellingsen, J. E., Jostein Haugen, H.,and Tiainen, H. (2015) TiO scaffolds in peri-implant dehiscence defects: an experimental pilotstudy. Clin Oral Implants Res.
[20] Xing, R., Witso, I. L., Jugowiec, D., Tiainen, H., Shabestari, M., Lyngstadaas, S. P., Lonn-Stensrud, J., and Haugen, H. J. (2015) Antibacterial effect of doxycycline-coated dental abutment surfaces. Biomed Mater.
[21] Müller, B., Haugen, H., Simonsen, S. L., and Tiainen, H. (2016) Grain boundary corrosion of highly porous ceramic TiO2 foams is reduced by annealing and quenching. J Eur Ceram Soc 36, 179-188.
[22] Müller, B., Haugen, H., Nilsen, O., Tiainen, H. (2016) Atomic layer deposited TiO 2 protects porous ceramic foams from grain boundary corrosion. Corrosion Science 106, 35–42.
[23] Rumian, Ł., Tiainen, H., Cibor, U., Krok-Borkowicz, M., Brzychczy-Włoch, M., Haugen, H., Pamuła, E. (2016) Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Materials Science and Engineering C 69, 856–864.
[24] Rumian, L.; Tiainen, H.; Cibor, U.; Krok-Borkowicz, M.; Brzychczy-Wloch, M.; Haugen, H.J.; Pamula, E. (2017) Ceramic scaffolds with immobilized vancomycin-loaded poly(lactide-co-glycolide) microparticles for bone defects treatment. Materials Letters, 190, 67-70, doi:10.1016/j.matlet.2016.12.113.
[25] Zhang, X.; Tiainen, H.; Haugen, H.J. (2019) Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput, 57, 311-324.
[26] Rumian, L.; Wolf-Brandstetter, C.; Rossler, S.; Reczynska, K.; Tiainen, H.; Haugen, H.J.; Scharnweber, D.; Pamula, E. (2020) Sodium alendronate loaded poly(l-lactide- co glycolide) microparticles immobilized on ceramic scaffolds for local treatment of bone
defects. Regen Biomater, 7, 293-302, doi:10.1093/rb/rbaa012.
[27] Thieu, M.K.L.; Haugen, H.J.; Sanz-Esporrin, J.; Sanz, M.; Lyngstadaas, S.P.; Verket, A. (2021) Guided bone regeneration of chronic non-contained bone defects using a volume stable porous block TiO2 scaffold: An experimental in vivo study. Clin Oral Implants Res,
32, 369-381.
[28] Thieu, M.K.L.; Homayouni, A.; Ringsby Hæren, L.; Tiainen, H.; Verket, A.; Ellingsen, J.E.; Rønold, H.J.; Wohlfahrt, J.C.; Gonzalez Cantalapiedra, A.; Guzon Muñoz, F.M.; Permuy Mendaña, M.; Lyngstadaas, S.P.; Haugen, H.J. (2021), Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomaterials Research, 25:43.
[29] Thieu, M.K.L.; Stoetzel, S.; Rahmati, M.; El Khassawna, T.; Verket, A.; Sanz-Esporrin, J.; Sanz, M.; Ellingsen, J.E.; Haugen, H.J. (2022) Immunohistochemical comparison of lateral bone augmentation using a synthetic TiO(2) block or a xenogeneic graft in chronic alveolar defects. Clin Implant Dent Relat Res.