Scientific Literature & Clinical Studies

MucoPrep™

De Lauretis, A.; Wang, Q.; Santacroce, M.; Thiede, B.; Ma, Q.; Lyngstadaas, S. P.; Ellingsen, J. E.; Linke, D.; Haugen, H. J. A Comparative Study of the Impact of Chemical Debridement Products on the Proteomic Profile of the Salivary Pellicle and Cell Adhesion on OsseoSpeed Titanium Dental Implant Surfaces. ACS Appl. Mater. Interfaces 2025, ASAP, DOI: 10.1021/acsami.5c14570.

 

PeriPrep™

Hussain, B.; Haugen, H.J.; Aass, A.M.; Sanz, M.; Antonoglou, G.N.; Bouchard, P.; Bozic, D.; Eickholz, P.; Jepsen, K.; Jepsen, S.; Karaca, E.O.; Kuru, B.E.; Nemcovsky, C.E.; Papapanou, P.N.; Pilloni, A.; Renvert, S.; Roccuzzo, M.; Sanz-Esporrin, J.; Spahr, A.; Stavropoulos, A.; Verket, A.; Vrazic, D.; Lyngstadaas, S.P. Peri-Implant Health and the Knowing-Doing Gap-A Digital Survey on Procedures and Therapies. Frontiers in Dental Medicine 2021, 2, doi:10.3389/fdmed.2021.726607.

Hussain, B.; Khan, S.; Agger, A.E.; Ellingsen, J.E.; Lyngstadaas, S.P.; Bueno, J.; Haugen, H.J. A Comparative Investigation of Chemical Decontamination Methods for In-Situ Cleaning of Dental Implant Surfaces. J Funct Biomater 2023, 14, doi:10.3390/jfb14080394.

Hussain, B.; Simm, R.; Bueno, J.; Giannettou, S.; Naemi, A.O.; Lyngstadaas, S.P.; Haugen, H.J. Biofouling on titanium implants: a novel formulation of poloxamer and peroxide for in situ removal of pellicle and multi-species oral biofilm. Regen Biomater 2024, 11, rbae014, doi:10.1093/rb/rbae014.

Wang, Q.; Haugen, H.J.; Linke, D.; Lyngstadaas, S.P.; Sigurjónsson, O.E.; Ma, Q.L. Impact of different chemical debridement agents on early cellular responses to titanium dental implants: A transcriptome-based in vitro study on peri-implant tissue regeneration. Colloid Surface B 2025, 253, doi:10.1016/j.colsurfb.2025.114727.

De Lauretis, A.; Agger, A.E.; Pal, A.; Pedersen, J.S.; Szostak, S.M.; Lund, R.; Lyngstadaas, S.P.; Ellingsen, J.E.; Linke, D.; Haugen, H.J. Balancing sterilization and functional properties in Poloxamer 407 hydrogels: comparing heat and radiation techniques. Regenerative Biomaterials 2025, 12, doi:10.1093/rb/rbaf005.

De Lauretis, A.; Wang, Q.; Santacroce, M.; Thiede, B.; Ma, Q.; Lyngstadaas, S. P.; Ellingsen, J. E.; Linke, D.; Haugen, H. J. A Comparative Study of the Impact of Chemical Debridement Products on the Proteomic Profile of the Salivary Pellicle and Cell Adhesion on OsseoSpeed Titanium Dental Implant Surfaces. ACS Appl. Mater. Interfaces 2025, ASAP, DOI: 10.1021/acsami.5c14570.

 

PeriBrush™

Gustumhaugen, E.; Lonn-Stensrud, J.; Scheie, A.A.; Lyngstadaas, S.P.; Ekfeldt, A.; Taxt-Lamolle, S. Effect of chemical and mechanical debridement techniques on bacterial re-growth on rough titanium surfaces: an in vitro study. Clin Oral Implants Res 2014, 25, 707-713, https://doi.org/10.1111/clr.12130.

John, G.; Becker, J.; Schwarz, F. Rotating titanium brush for plaque removal from rough titanium surfaces--an in vitro study. Clin Oral Implants Res 2014, 25, 838-842, https://doi.org/10.1111/clr.12147.

Carral, C.; Munoz, F.; Permuy, M.; Linares, A.; Dard, M.; Blanco, J. Mechanical and chemical implant decontamination in surgical peri-implantitis treatment: preclinical "in vivo" study. J Clin Periodontol 2016, 43, 694-701, https://doi.org/10.1111/jcpe.12566

Al‐Hashedi, A.A.; Laurenti, M.; Benhamou, V.; Tamimi, F. Decontamination of titanium implants using physical methods. Clin Oral Implan Res 2017, 28, 1013-1021.

Jordi, G.-A. Alterations to Dental Implant Surfaces Produced by Different Methods of Mechanical Debridement. In Vitro Scanning Electron Microscope Study. EC Dental Science 2017, 15, 36-43.

Toma, S.; Behets, C.; Brecx, M.C.; Lasserre, J.F. In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. Materials (Basel) 2018, 11, https://doi.org/10.3390/ma11122484.

de Tapia, B.; Valles, C.; Ribeiro-Amaral, T.; Mor, C.; Herrera, D.; Sanz, M.; Nart, J. The adjunctive effect of a titanium brush in implant surface decontamination at peri‐implantitis surgical regenerative interventions: A randomized controlled clinical trial. J Clin Periodontol 2019, 46, 586-596.

Toma, S.; Brecx, M.C.; Lasserre, J.F. Clinical Evaluation of Three Surgical Modalities in the Treatment of Peri-Implantitis: A Randomized Controlled Clinical Trial. J Clin Med 2019, 8, 966, https://doi.org/10.3390/jcm8070966.

Vigano, P.; Apaza Alccayhuaman, K.A.; Sakuma, S.; Amari, Y.; Bengazi, F.; Botticelli, D. Use of TiBrush for surface decontamination at peri-implantitis sites in dogs: Radiographic and histological outcomes. J Investig Clin Dent 2019, 10, e12378, https://doi.org/10.1111/jicd.12378.

Lollobrigida, M.; Fortunato, L.; Serafini, G.; Mazzucchi, G.; Bozzuto, G.; Molinari, A.; Serra, E.; Menchini, F.; Vozza, I.; De Biase, A. The Prevention of Implant Surface Alterations in the Treatment of Peri-Implantitis: Comparison of Three Different Mechanical and Physical Treatments. Int J Environ Res Public Health 2020, 17, 2624, https://doi.org/10.3390/ijerph17082624.

De Lauretis, A.; Santacroce, M.; Ellingsen, J.E.; Lyngstadaas, S.P.; Linke, D.; Haugen, H.J.; et al. Surface-specific outcomes of mechanical debridement with titanium, chitosan and nitinol brushes on titanium dental implant surfaces. J Dent. 2025;162:106010. doi:10.1016/j.jdent.2025.106010.

 

PeriHeal™

Rubert, M.; Ramis, J.M.; Vondrasek, J.; Gayà, A.; Lyngstadaas, S.P.; Monjo, M. Synthetic Peptides Analogue to Enamel Proteins Promote Osteogenic Differentiation of MC3T3-E1 and Mesenchymal Stem Cells. J Biomater Tiss Eng 2011, 1, 198-209, doi:10.1166/jbt.2011.1018.

Wald, T.; Bednárová, L.; Osicka, R.; Pachl, P.; Sulc, M.; Lyngstadaas, S.P.; Slaby, I.; Vondrásek, J. Biophysical characterization of recombinant human ameloblastin. European journal of oral sciences 2011, 119, 261-269, doi:10.1111/j.1600-0722.2011.00913.x.

Ramis, J.M.; Rubert, M.; Vondrasek, J.; Gaya, A.; Lyngstadaas, S.P.; Monjo, M. Effect of enamel matrix derivative and of proline-rich synthetic peptides on the differentiation of human mesenchymal stem cells toward the osteogenic lineage. Tissue Eng Part A 2012, 18, 1253-1263, doi:10.1089/ten.tea.2011.0404.

Rubert, M.; Monjo, M.; Lyngstadaas, S.P.; Ramis, J.M. Effect of alginate hydrogel containing polyproline-rich peptides on osteoblast differentiation. Biomed Mater 2012, 7, 055003, doi:10.1088/1748-6041/7/5/055003.

Rubert, M.; Pullisaar, H.; Gomez-Florit, M.; Ramis, J.M.; Tiainen, H.; Haugen, H.J.; Lyngstadaas, S.P.; Monjo, M. Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. J Biomed Mater Res A 2013, 101, 1768-1777, doi:10.1002/jbm.a.34458.

Villa, O.; Brookes, S.J.; Thiede, B.; Heijl, L.; Lyngstadaas, S.P.; Reseland, J.E. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts. J Tissue Eng 2015, 6, 2041731415575857, doi:10.1177/2041731415575857.

Øvrebo, Ø.; De Lauretis, A.; Ma, Q.; Lyngstadaas, S.P.; Perale, G.; Nilsen, O.; Rossi, F.; Haugen, H.J. Towards bone regeneration: Understanding the nucleating ability of proline-rich peptides in biomineralisation. Biomater Adv 2024, 159, 213801, doi:10.1016/j.bioadv.2024.213801.

Øvrebø, Ø; Giorgi, Z; De Lauretis, A; Vanoli, V; Briatico-Vangosa, F; Ma, Q.; Perale, G; Haugen, H; Rossi, F. Characterisation and biocompatibility of crosslinked hyaluronic acid with BDDE and PEGDE for clinical applications. React Funct Polym. 2024;200:105920. doi:10.1016/j.reactfunctpolym.2024.105920.

Øvrebø, Ø.; Lyngstadaas, S.P.; El Khassawna, T.; et al. Multiomics comparison of proline-rich peptide-enhanced hyaluronic acid gels versus conventional regenerative materials: an early wound-healing model. J Periodont Res. 2025;1–21. doi:10.1111/jre.70032. 

 

NuBone™

Haugen, H.; Will, J.; Köhler, A.; Hopfner, U.; Aigner, J.; Wintermantel, E. Ceramic TiO foams: characterisation of a potential scaffold. J Eur Ceram Soc 2004, 24, 661-668, doi:10.1016/S0955-2219(03)00255-3.

Fostad, G.; Hafell, B.; Forde, A.; Dittmann, R.; Sabetrasekh, R.; Will, J.; Ellingsen, J.E.; Lyngstadaas, S.P.; Haugen, H.J. Loadable TiO scaffolds-A correlation study between processing parameters, micro CT analysis and mechanical strength. J Eur Ceram Soc 2009, 29, 2773-2781, doi:10.1016/j.jeurceramsoc.2009.03.017.

Tiainen, H.; Wohlfahrt, J.C.; Verket, A.; Lyngstadaas, S.P.; Haugen, H.J. Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomater 2012, 8, 2384-2391, doi:10.1016/j.actbio.2012.02.020.

Gómez-Florit, M.; Rubert, M.; Ramis, J.M.; Haugen, H.J.; Tiainen, H.; Lyngstadaas, S.P.; Monjo, M. TiO2 Scaffolds Sustain Differentiation of MC3T3-E1 Cells. J Biomater Tiss Eng 2012, 2, 336-344, doi:10.1166/jbt.2012.1055.

Tiainen, H.; Wiedmer, D.; Haugen, H.J. Processing of highly porous TiO bone scaffolds with improved compressive strength. J Eur Ceram Soc 2013, 33, 15-24, doi:10.1016/j.jeurceramsoc.2012.08.016.

Rubert, M.; Pullisaar, H.; Gomez-Florit, M.; Ramis, J.M.; Tiainen, H.; Haugen, H.J.; Lyngstadaas, S.P.; Monjo, M. Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. J Biomed Mater Res A 2013, 101, 1768-1777, doi:10.1002/jbm.a.34458.

Muller, B.; Reseland, J.E.; Haugen, H.J.; Tiainen, H. Cell growth on pore-graded biomimetic TiO2 bone scaffolds. J Biomater Appl 2015, 29, 1284-1295, doi:10.1177/0885328214559859.

Pullisaar, H.; Verket, A.; Szoke, K.; Tiainen, H.; Haugen, H.J.; Brinchmann, J.E.; Reseland, J.E.; Ostrup, E. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. J Tissue Eng 2015, 6, 2041731415575870, doi:10.1177/2041731415575870.

Verket A, Muller B, Wohlfahrt JC, Lyngstadaas SP, Ellingsen JE, Haugen HJ, et al. TiO2 scaffolds in peri-implant dehiscence defects: an experimental pilot study. Clin Oral Implants Res. 2016;27:1200–6. doi:10.1111/clr.12725.

Rumian, L.; Tiainen, H.; Cibor, U.; Krok-Borkowicz, M.; Brzychczy-Wloch, M.; Haugen, H.J.; Pamula, E. Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Mater Sci Eng C Mater Biol Appl 2016, 69, 856-864, doi:10.1016/j.msec.2016.07.065.

Müller, B.; Haugen, H.; Nilsen, O.; Tiainen, H. Atomic layer deposited TiO2 protects porous ceramic foams from grain boundary corrosion. Corrosion Science 2016, 106, 35-42, doi:10.1016/j.corsci.2016.01.023.

Zhang, X.; Tiainen, H.; Haugen, H.J. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput 2019, 57, 311-324, doi:10.1007/s11517-018-1884-2.

Thieu, M.K.L.; Haugen, H.J.; Sanz-Esporrin, J.; Sanz, M.; Lyngstadaas, S.P.; Verket, A. Guided bone regeneration of chronic non-contained bone defects using a volume stable porous block TiO2 scaffold: An experimental in vivo study. Clin Oral Implants Res 2021, 32, 369-381, doi:10.1111/clr.13708.

Le Thieu, M.K.; Homayouni, A.; Haeren, L.R.; Tiainen, H.; Verket, A.; Ellingsen, J.E.; Ronold, H.J.; Wohlfahrt, J.C.; Cantalapiedra, A.G.; Munoz, F.M.G.; Mendana, M.P.; Lyngstadaas, S.P.; Haugen, H.J. Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomater Res 2021, 25, 43, doi:10.1186/s40824-021-00245-3.

Schroder, M.; Reseland, J.E.; Haugen, H.J. Osteoblasts in a Perfusion Flow Bioreactor-Tissue Engineered Constructs of TiO(2) Scaffolds and Cells for Improved Clinical Performance. Cells 2022, 11, doi:10.3390/cells11131995.

Thieu, M.K.L.; Stoetzel, S.; Rahmati, M.; El Khassawna, T.; Verket, A.; Sanz-Esporrin, J.; Sanz, M.; Ellingsen, J.E.; Haugen, H.J. Immunohistochemical comparison of lateral bone augmentation using a synthetic TiO(2) block or a xenogeneic graft in chronic alveolar defects. Clin Implant Dent Relat Res 2023, 25, 57-67, doi:10.1111/cid.13143.